Progression in written calculations in response to the \mathcal{N} cw Maths Curriculum Written with staff November 2016

This policy has been written in response to the New National Curriculum September 2014, and aims to ensure consistency in the mathematical written methods and approaches to calculation across years 1-6. Reception needs will be met through Early Years Outcomes.

The document is organised according to age related expectation, fowever it may be neces. sary for teachers to consult with lower year groups for children in order to meet their needs at the stage these children are working at.

Whilst the New Curriculum for September 2014 does not feature Uling and Applying, wherever possible, it is important for teachers to create reallife contexts for learning in maths.

As part of a child's learning in calculation, they need to be taught how to select the best method according to the numbers. The fierarchy of thinking should be:

Rationale for XS 1

Children in Years 1 and 2 will be given a really solid foundation in the basic building blocks of mental and written arithmetic. Through being taught place value, they will develop an understanding of how numbers work, so that they are confident in 2-digit numbers and beginning to read and say numbers above $100 . \mathcal{A}$ focus on number bonds, first via practical fands-on experiences and subsequently using memorisation tecfniques, enables a good grounding in these crucial facts, and ensures that all children leave g2 knowing the pairs of numbers which make all the numbers up to 10 at le ast. They will also have experienced and been taught pairs to 20. The ir Knowledge of number facts enables them to add several single-digit numbers, and to add/subtract a single digit number to/from a 2-digit number. Another important conce ptual tool is the ir ability to add/subtract 1 or 10 , and to understand which digit changes and why. This understanding is extended to enable children to add and subtract multiples of ten to and from any 2-digit number. The most important application of this Knowledge is their ability to add or subtract any pair of 2 digit numbers by counting on or back in tens and ones. Children may extend this to add. ing by partitioning numbers into tens and ones. Cfildren will be taught to count in $2 s$, $3 s, 5 s$ and $10 s$, and will have related this skill to repeated addition. They will fave me t and begun to le arn the associated $2 x, 3 x, 5 x$ and $10 x$ tables. Engaging in a practical way with the concept of repeated addition and the use of arrays enables cfildren to develop a preliminary understanding of multiplication, and asking them to consider fow many groups of a given number make a total will introduce them to the ide a of division. They will also be taught to double and falve numbers, and will thus experience scaling up or down as a further aspect of multiplication and division. Fractions will be introduced as numbers and as operators, specifically in relation to falves, quarters and thirds.

Rationale for Lower XS 2 (Years 3 e̛4)

In the lower juniors, children build on the concrete and conceptual understandings they have gained in the Infants to develop a realmathematical understanding of the four operations, in particular developing aritfmetical competence in relation to larger numbers. In addition and subtraction, they are taught to use place value and number facts to add and subtract numbers mentally and will develop a range of strategies to enable them to discard the 'counting in ones' or fingers- Gased methods of the infants. In particular, they will le arn to add and subtract multiples and ne ar multiples of 10,100 and 1000 , and will become fluent in counting on as an accurate means of ackieving fast and accurate answers to 3-digit subtractions. Standard written methods for adding larger numbers are taught, le arned and consolidated, and written column subtraction is also introduced. This key stage is also the period during which all the multiplication and division facts are thoroughly memorised, including all facts up to the 12×12 table. Efficient written methods for multiplying or divid. ing a 2-digit or 3-digit number by as single-digit number are taught, as are mental strategies for multiplication or division with large but friendly numbers, e.g. when dividing 6y 5 or multiplying by 20. Children will de ve lop the ir understanding of fractions, le arning to reduce a fraction to its simplest form as well as finding non-unit fractions of amounts and quantities. The concept of a decimal number is introduced and children consolidate a firm understanding of one-place decimals, multiplying and dividing whole numbers by 10 and 100.

Rationale for UKSS 2 (Years 5 ér)

Children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and fractions. They will consolidate their use of written proce. dures in adding and subtracting whole numbers with up to 6 digits and also decimalnum. Gers with up to two decimal places. Mentalstrategies for adding and subtracting increasingly large numbers will also be taught. These will draw upon children's robust understanding of place value and Knowledge of number facts. Efficient and flexible strategies for mental multiplication and division are taught and practised, so that children can perform appropriate calculations even when the numbers are large, such as $40,000 \times 6$ or 40,000 : 8. In addition, it is in 95 and 96 that children extend the ir Knowle dge and confidence in using written algorithms formultiplication and division. Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of children's understanding of these more complicated numbers, and they will also calculate simple percentages and ratios. Negative numbers will be added and subtracted.

Year 1 Add with numbers up to 20
Ulse practical resources (numbered number lines) to add, by counting on in ones, encouraging cfildren to begin with larger number and count on.
$6+3=9$

Children should:

- Kave access to a range of equipmenteg. Number lines, counting apparatus, $\mathcal{N} u m i c o n, 100$, squares, bead strings etc
- be shown numbers in a range of contexts
- Read and write number sentences using the $=$ and + signs Interpret number sentences including missing number prob. lems eg. $3+\square=8$

Bead strings or bead bars can be used to illustrate addition including bridging through ten by counting on 2 then counting on 3 .

```
8+5
```


Key vocabulary add, more, plus, and, make, altogether, total, equals, double, most, count on, number line

Key Skills for addition at Year 1

- Read and write numbers to 100 in numerals (1-20 in words)
- Count to and across 100
- Recall bonds to 10 and 20, and addition facts within 20 ('story of' 5, 6, 7, 8, 9 and 10)

Count on in ones from a given 2 -digit number

- $\mathcal{A d} d$ two single-digit numbers by counting on
- Add three single-digit numbers spotting doubles or pairs to 10
- Count on in tens from any given 2-digit number
- Add 10 to any given 2-digit number
- Ulse number facts to add single-digit numbers to two-digit numbers, e.g. use $4+3$ to work out $24+3,34+3$...
- Add by putting the larger number first
- Recognise doubles to double 6

Year 2 Add with 2-digit numbers develop mentalfluency with place value
and addition using 2-digit numbers, then move to formal methods
Add 2-digit numbers and tens, 2-digits and ones, two 2-digit numbers, first practically using equipment (Base 10, Numicon, 100 squares) then using number lines as below:

Children move to more formal recording using partitioning method, setting out as follows:

Add 2-digit numbers and ones:

$20+40=60$

$$
5+7=12
$$

This needs to be modelled using apparatus such as

Base 10 and \mathcal{N} (umicon.
$/ / / /\left.\right|_{\substack{g_{0} \\ g_{0}^{0}}} ^{\substack{0}}$

Key vocabulary add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, addition

Key Skills for addition at Year 2

- Locate any 2-digit number on a landmarked line and use this to compare numbers; record comparisons <and \geqslant e.g. $56>39$.
- Identify any number on the $1-100$ number grid; understand that each number is a multiple of ten and some ones, e.g. 54 is 50 and 4 more.
- $\mathcal{A d d}$ two single digit numbers $(8+7)$ by counting up; add two 2-digit numbers which totalless than 100 by counting on in tens and ones, e.g. $54+37$ as $54+30+7$.
- Know securely number pairs for all the numbers up to and including 12
- Count in steps of 2,5 , and 10 from 0 .
- Know different unit patterns when not crossing a ten, e.g. $4+3=7,14+3=17,24+3=27$
- Begin to recognise unit patterns when crossing a ten, e.g. $5+6=11$
- Know pairs with a totalof 20 and multiples of 10 to 100
- Count on in ones and tens from any given 2-digit number
- Add two or three single-digit numbers
- $\mathcal{A d d}$ a single-digit number to any 2-digit number using number facts, including bridging multiples of 10 . Add 10 and
small multiples of 10 to any given 2 -digit number
$\mathcal{A d} d$ any pair of 2-digit numbers
- Know that adding can be done in any order
- Solve problems with addition using concrete objects, pictorial representations, involving numbers, quantities and me asures, applying written and mental methods

Year 3 Add numbers up to 3 digits
Use partitioning method for addition to add two or three 3-digit numbers or three 2-digit numbers (see year 2) Begin to use compact column addition to add numbers with three digits.

Children who are very secure and confident with 3-digit expanded column ad dition, should be moved onto the compact column addition method, involving carrying. A comparison of the partitioning addition method to compact meth. od is useful to show minimising the number of steps involved.

Key vocabulary add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units/ones, partition, addition, column, tens boundary, hundreds boundary, increase, vertical, 'carry', expanded, compact, column addition
Key Skills for addition at Year 3

- Know pairs with each total to 20
- Know pairs of multiples of 10 with a total of 100
- Add any two 2-digit numbers by counting on in $10 s$ and $1 s$ or by using partitioning
- Add multiples and ne ar multiples of 10 and 100
- Add 1,10, 100 to 3-digit numbers
- Understand place value in 3-digit numbers
- Perform place value additions without a struggle. (E.g. $300+8+50=358$)
- Ule place value and number facts to add a 1-digit or 2-digit number to a 3-digit number number. (E.g. $104+56$ is 160 since $104+50=154$ and $6+4=10$ and $676+8$ is 684 since $8=4+4$ and $76+4+4=84$)
- Add pairs of 'friendly' 3-digit numbers mentally, e.g. $320+450$
- Begin to add amounts of money using partitioning.
- Solve problems with addition using number facts, place value, missing numbers.

Year 4 Add numbers with up to 4 digits
Continue to use the compact column method, adding units first and carrying underneatf the calculation. Also include money and measures contexts.

Children use and apply this method to money and measures. Key vocabulary add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units/ ones, partition, addition, column, tens boundary, fundreds boundary, increase, vertical, 'carry', expanded, compact, column method, thous ands, fundreds, digits, inverse

Key Skills for addition at Year 4

- Select appropriate method, mental, jottings, written-and explain why
- Add any two 2-digit numbers by partitioning or counting on
- Knowby feart/quickly derive number bonds to $100(e g 32+68)$ and to $\pm 1(64 p+36 p)$
- Add to the next fundred, pound and whote number. (E.g. $234+66=300,3.4+0.6=4$)
- Perform place value additions without a struggle. (E.g. $300+8+50+4000=4358$)
- Add multiples and near multiples of 10,100 and 1000.
- $\quad \mathcal{A d d} \pm 1,10 p, 1 p$ to amounts of money
- Ulse place value and number facts to add 1-, 2-, 3-and 4-digit numbers where a mental calculation is appropriate'. (E.g. $4004+156$ by knowing that $6+4=10$ and that $4004+150=4154$ so total is 4160)
- Perform inverse operations to check
- Solve 2-step problems in context
- Continue to practise a wide range of mental addition strategies eg. Round and adjust, ne ar doubles, numbers bonds, partitioning and recombining

Ye ar 5 Add numbers with more than 4 digits

including money, measure and decimals with different numbers of decimal places

Key vocabulary add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units/ones, partition, addition, column, tens boundary, hundreds boundary, increase, vertical, 'carry', expanded, compact, thousands, hundreds, digits, inverse, decimal places, decimalpoint, tenths, fundredths, thousandths.

Key Skills for addition at Ye ar 5

- Locate 5 and 6 digit numbers on a landmarked line; use this to comparelorder numbers.
- Round to ten, a fundred, a thousand or ten thousand.
- Ulse rounding to checkaccuracy
- Understand a one-place decimal number as a number of tenths and a two-place decimal number as a number of fundredths.
- Add or subtract 0.1 or 0.01 to/from any decimal number witf confidence, e.g. $5.83+0.01$ or 4.83-0.1
- Add and subtract mentally with confidence - where the numbers are less than 100 or the calculation relies upon simple addition and place value.
- Confidently add numbers with more than 4-digits using a secure written method, including adding 'piles' of numbers
- Ulse inverse to checkcalculations

Year 6 Add several numbers of increasing complexity
including money, measure and decimals with different numbers of decimal places

Ulse compact column method to add in context of money, me asures, includ. ing decimals with different numbers of decimal places.

Commas will only be placed in the answer to avoid confusion with carried digits.

Pupils should apply their knowle dge of a range of mental strategies, mental recall skills, informal and formal written methods when selecting the appropriate method to work out addition problems. O pportunities to discuss the appropriateness of methods

Key vocabulary add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units/ones, partition, addition, column, tens boundary, hundreds boundary, increase, vertical, 'carry', expanded, compact, thousands, fundreds, digits, inverse, decimalplaces, decimal point, tenths, fundredths, thousandths.

Key Skills for addition at Year 6
$\mathfrak{A d d}$ mentally with confidence using larger numbers and calculations of increas. ing complexity
$\mathfrak{A d d}$ several large numbers using written addition
Add severallarge or decimal numbers using written addition
Perform mental calculations, including with mixed operations and large numbers, using a range of strategies
Solve multi-step problems
Ulse estimation and inverse to check the validity of an answer
Decide when to place a comma in the answer between the thousands and fundreds

Year 1 Subtract from numbers up to 20

Children consolidate understanding of subtraction practically using bead strings, cubes etc and in reallife contexts. They are introduced to more formal recording using number lines, then using empty numbers lines.

$5-3=2$

Model subtraction practically and using number tracks, number lines and 100 squares and practically.

Children will explore subtracting with different apparatus e.g. multilink cubes.

What is one
less than 7?

Key vocabulary take, take-away, Less, minus, subtract, le aves, fow many fewer/less than, most, least, count back, how many left \dagger

Key SKills for subtraction at Year 1

- Give a number, say one less
- Count back in ones to from 100 and from any single-digit or 2-digit number.
- Count back in tens from any 2-digit number
- Locate any number on a 1-100 grid or a beaded line 0-100.
- Knownumber bonds to 10, also know what is left if objects are taken from 10, e.g. 10 fingers, fold down 4, le aves 6 standing.
- Solve one-step problems involving subtraction, using concrete objects (bead strings, objects, cubes) and pictures, and missing number problems
- Recognise the - and = signs, and use these to read and write simple subtractions.

Year 2 subtract with 2-digit numbers

Ulse practicalequipment such as Base 10 and $\mathfrak{N} u m$ icon to model subtraction.

Subtract first practically and on a on a numbered number line. \mathcal{N} (xt subtract on an empty number line, followed by counting back, aiming to developmentalsubtractionskills.

Subtracting pairs of 2-digit numbers on a number line:

47-23 = 24 Partition the second number and subtract it in tens and units, as below:

Move towards more efficient

Combine me thiodir with use of a hundred square to neinforce imderstanding of rumber volue ond arder

Teaching children to bridge through ten can help them to become more efficient, for example 42-25:

Children should also learn fow to count on in order to find the difference. They should be given opportunities to explore when to count on and when to count back.

Key vocabulary take, take away, less, minus, subtract, difference between, how many fewer/le ss than, le ast, count back, how many left, how much less is..., difference, count on, strategy, partition, tens units/ones
Key Skills for subtraction at Year 2

- Recognise that addition and subtraction are inverse operations and understand that $10-4=6$ as well as $6+4=10$.
- Count backin ones or tens to take away, e.g.27-3=or 54-20=.
- Begin to count up to find a difference between two numbers with a smallgap (4238). Know when to count on and when to count back
- Recall and use subtraction facts to 20 fluently
- And derive and use related fact to 100
- Subtract using concrete objects, pictorial representations, 100 squares, Base 10 , \mathcal{N} umicon and mentally, including a 2-digit number and ones, a 2-digit numbers and tens, and two 2-digit numbers
- Ule inverse to check calculations.

Year 3 Subtract with 2 and 3-digit numbers
Subtract on an empty number line (EN(L) by counting on

Children should understand when to count backwhere appropriate, using place value or number facts. This skill should be reinforced through mental work.
$\mathcal{B e g}$ in to use formal column subtraction method, first using 'friendly numbers'.

Move to formal subtrac.

Teach the children to consider
the most appropriate method
tion using 'take and make'.

Key vocabulary equal to, take, take-away, less, minus, subtract, leaves, dis tance between, how many more, how many fewer/less than, most, le ast count back, how many left, how much less is..., difference, count on, strategy, partition, tens units, take and make, exchange, digit, value, fundreds

Key Skills for subtraction at Year 3

- Understand place value in 3-digit numbers; add and subtract 1 s, 10 s or 100 s without difficulty; use this to add and subtract multiples of 1, 10, 100 to/from 3-digit numbers.
- Mentally subtract any pair of 2 digit numbers, e.g. 75-58
- Recognise that there are two ways of completing subtractions, either by counting up (using $\mathfrak{E N}(\mathcal{L})$ or by counting back, e.g. 54-3 (counting up)
- Subtract mentally using place value and number bonds, eg.347-5, 347. 40, 347-100)

Year 4 Subtract with up to 4-digit numbers
Subtract using formal column subtraction, using take and make where appropriate.

Ulse $\mathcal{N u m i c}$ on and $\mathcal{D i e n e s}$
to provide visual image for 'take and make'

Ulse complementary addition to subtract amounts of money, and for subtractions where the larger number is a near multiple of 1000 or 100

Ulse counting up with confidence to solve most subtractions, including finding complements to multiples of 100 . (E.g. 512-287 is done by

$\mathfrak{N} \mathcal{B}$. Children should be encouraged to progress to using the fewest number of jumps

Key vocabulary equalto, take, take-away, less, minus, subtract, leaves, dis tance betwe n, how many more, how many fewer/less than, most, le ast count back, how many left, how much less is..., difference, count on, strategy, partition, tens units, take and make, exchange, digit, value, fundreds, inverse

Key Skills for subtraction at Ye ar 4

- Mentally subtract any pair of two digit numbers.
- Subtract 3 digit numbers from 3 digit numbers using counting on, e.g.

426-278 by jumping along a line from 278 to 426

- Practise mental subtraction strategies, eg. Round and adjust (37-9), us . ing place value
- Ulse counting on in the context of money and also when subtracting from numbers ending in zeros eg 4000-372
- Count backwards through zero, using negative numbers

Year 5 Subtract with at least 4 -digit numbers
including money measures and decimals
Ulse compact column subtraction to subtract numbers with up to 5 digits.

Commas will only be placed in the answer to avoid confusion with carried digits.

Ulse counting on for subtractions where the larger number is a multiple or near multiple of 1000 , or for decimals

Key vocabulary equalto, take, take-away, less, minus, subtract, leaves, dis tance betwe en, fow many more, fow many fewer/less than, most, le ast count back, how many left, how much less is..., difference, count on, strategy, partition, tens units, take and make, exchange, digit, value, fundreds, inverse, tentrs, fundredths, decimal point, decimal

Key Skills for subtraction at Year 5

- Count backwards through zero, using negative numbers
- Add or subtract 0.1 or 0.01 to/from any decimal number with confidence, e.g. $5.83+0.01$ or $4.83-0.1$
- Childrenneed to utilise and consider a range of subtraction strategies, jottings and written methods before choosing fow to calculate
- Subtract larger numbers using column subtraction or by counting up
- Begin to subtract decimal numbers using counting up: 6.2-3.5
- Decide wfich mental methods to use and explain why
- Decide when to place a comma in the answer between the thousands and

Year 6 subtracting with increasingly large and more complex numbers and decimal values.

Pupils should apply the ir Knowle dge of a range of mental strategies, mental recall skills, informal and formal written methods when selecting the appropriate method to work out subtraction problems. Opportunities to discuss the appropriateness of meth. ods need to be planned for.

Ulse the compact column method to subtract more complex integers

Use compact column method to subtract in context of mone y, measures, including decimals with different numbers of decimal places.

Add a zero in any empty decimal place to aid under standing of what to subtract. Place decimal points in a whole square to avoid confusion with carried digits, but explain that

Key vocabulary equal to, take, take-away, less, minus, subtract, le aves, dis tance betwe en, fow many more, how many fewer/ less than, most, le ast count back, how many left, how much less is..., difference, count on, strategy, partition, tens units, take and make, exchange, digit, value, fundreds, inverse, tenths, fundredths, decimal point, decimal
Key Skills for subtraction at Year 6

- Subtract mentally with confidence - where the numbers are less than 100 or the calculation relies upon simple subtraction and place value. Examples include: 6,723-400, 72-46, 100-64
- Subtract large numbers using column subtraction or counting up, e.g. 1323-758
- Subtract decimalnumbers using counting up
- Ulse negative numbers in context and calculate intervals across zero
- Children need to utilise and consider a range of mental subtraction strategies, jottings and written methods before deciding how to calculate
- Decide which methods to use and explain why
- Decide when to place a comma in the answer between the thousands and hundreds

Ye ar 1 Multiply with concrete objects, arrays and pictorial representations There are 3 sweets in one bag. How many sweets are in 5 bags altogether?
How many legs will 3 teddies have?

Count in $2 s, 5 s, 10 s$

Use visual and concrete arrays and 'sets of' objects to find the answers to ' 3 lots of 4' or '3,4 times,' 2 lots of 5' or 5, two times' etc

$$
\square+D=\square 0
$$

3×4
4×3
3, 4 times
4,3 times

Clse \mathcal{N} (umicon to find doubles to
 double 6

Key vocabulary groups of, lots of, times, array, altogether, multiply, count

Key Skills for multiplication at Ye ar 1

- Count in multiples of 2, 5 and 10
- Recognise doubles to double 6

Solve simple one-step problems involving multiplication and division, calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

- Ulse and understand the language $2 \times 3=2,3$ times, $2 \times 4=2,4$ times

Year 2 Multiplication using arrays and repeated addition. (using at least $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s)

Use arrays and

Numiconto fielp teach children to understand the com. mutative law of multiplic ation and give

Learn doubles to double 20

Begin to double multiples of 5 to 100
Begin to double two-digit numbers less than 50 with 1 s digits of $1,2,34$ or 5

Use repeated addition on a number line:

Starting from zero, make equaljumps on a number line to work out multiplica. tion facts and write multiplication

$5 x 4=20$
(5,4 times)

Key vocabularygroups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, sets of, equalgroups, times as big as, once, twice, tfree times...

Key Skills for multiplication at Year 2

- Count in steps of 2,3 and 5 from zero and in 10 s from any number
- Know the $2 X, 5 X$ and $10 X$ tables and begin to say how many 10 s are in 40 or fow many 5s are in 30; recognise odd and even answers

Ulse and understand the language $2 \times 3=2,3$ times, $2 \times 4=2,4$ times
Write and calculate number statements using χ and $=$ signs
Show that multiplication can be done in any order
Solve a range of problems involving multiplication, using concrete objects, arrays, repeated addition, $\mathcal{N} u m$ icon, mentalmethods and multiplication facts

Year 3 multiply 2-digit numbers by a single digit number

Introduce the grid method for multiplying 2 digits by 1 digit

Eg. $\quad 23 \times 8=184$

X	20	3
8	160	24

$160+24=184$

Link the layout of the grid to an array initially:

Demonstrate fow the array links to the grid calculation

Children MUST be able to do the following
before moving onto grid method:

- Partition numbers into tens and units
- Multiply multiples of ten by a single digit using the ir knowledge of multiplication facts and times tables.
- Recall or work out multiplication facts in

Key vocabulary groups of, lots of, times, array, altogether, multiply, count, multiplied 6y, repeated addition, column, row, sets of, equalgroups, times as big as, once, twice, three times..., partition, grid metrod, multiple, product, tens, units, value

Key Skills for multiplication at Year 3

- Ulse and understand the language $2 \times 3=2,3$ times, $2 \times 4=2,4$ times
- Understand that multiplication is commutative, e.g. 4×8 is the same as 8 天 4.
- Know the $2 x, 5 x, 10 x, 3 x, 4 x$ and $8 x$ tables. All tables need to be learned to 12 th multiple.
- Multiply any 2-digit number by 10 or a single-digit number by 100;
- Understand the effect of multiplying whole numbers by 10 and 100 .
- Multiply a 1 digit number by a 2 digit number starting to use the grid
- Solve multiplication problems involving missing numbers

Year 4 Multiply 2 and 3 digits $6 y$ a single digit using

 all multiplication tables up to 12×12Developing the grid method:
Eg. $136 \times 5=680$

Move onto short multiplication (see 95) if and when children are confident and accurate multiplying 2 and 3 digit numbers $6 y$ a single digit this way and are already confident in carrying for written addition.

Children should be able to:

- Approximate before they calculate and make this a
regular part of the ir calculating, going Gack to the ir approximation to consider the reasonableness of their answer
- Record an approximation to checktheir answer against
- Multiply multiples of 10 and 1006 y a single digit, using smile multiplication

Key vocabularygroups of, lots of, times, array, altogether, multiply, count, multiplied $6 y$, repeated addition, column, row, sets of, equal groups, times as big as, once, twice, three times..., partition, grid method, multiple, product, tens, units, value, inverse

Key SKills for multiplication at Year 4

- Multiply 1 and 2 digit numbers 6y 10, 100 and 1000 ; to understand place value indecimal numbers with one place.
- Znow and recite all the times tables up to 12 th multiple, recognising commutativity; include multiplying by 0 (e.g. $5 \times 0=0,7 \times 0=0$) or by 1 (e.g. $5 \times 1=5,1 / 2 \times 1=1 / 2$).
- Ulse and understand the language $2 \times 3=2,3$ times, $2 \times 4=2,4$ times etc
- Multiply 1-digit numbers by 2-digit or friendly 3-digit numbers using grid method.
- Find doubles to double 100 and beyond, using partitioning
- Begin to double amounts of money
- Use doubling as strategy for multiplying by 2, 4, 8
- Count in multiples of 6, 7,9,25 and 1000

Year 5 Multiply up to 4 digits $6 y 1$ or 2 digits.

Introducing column multiplication

Introduce column multiplication by comparing a
 in order to see fow the
steps are related. \mathcal{N} otice fow there are less steps involved.

Introduce long multiplication for multiplying by 2 digits

Key vocabulary groups of, lots of, times, array, altogether, multiply, count, multiplied 6y, repeated addition, column, row, sets of, equalgroups, times as big as, once, twice, three times..., partition, grid method, multiple, product, tens, units, value, inverse, square, factor, integer, decimal, sfort/long multiplication, 'carry'
Key Skills for multiplication at Year 5

- Znow and recite all times tables including division facts.
- Identify multiples and factors, using Knowledge of multiplication tables up to 12×12, recognising commutativity
- Ulse and understand the language $2 \times 3=2,3$ times, $2 \times 4=2,4$ times etc
- Multiply numbers up to 4 digits by a 1-digit number using short multiplication
- Multiply numbers up to 4 digits by a 2-digit number using long multiplication
- Scale up or down by a factor of 2,5 or 10
- Multiply integers and decimals by 10, 100, 1000
- Recognise and use squared, cubes and their notations

Year 6 short and long multiplication, as in year 5, and multiply decimals with up to 2 decimal places by a single digit.

Ulse this method for money and measures.
Children should:

- Ule rounding and place value to make approximations before calculating and use these to check validity of answers
- Ulse short multiplication to (see 95) to multiply numbers with more than 4 digits by a single digit; to multiply money and measures; and to multiply decimals up to 2 decimal places by a single digit
- Ulse long multiplication (see 95) to multiply numbers with at le ast 4 digits by a 2-digit number

Key vocabulary groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, sets of, equalgroups, times as big as, once, twice, three times..., partition, grid method, multiple, product, tens, units, value, inverse, square, factor, integer, decimal, short/long multiplication, 'carry', tenths, fundredths, decimal

Key Skills for addition at Year 6

- Recall multiplication facts up to 12×12, recognising commutativity
- Ulse and understand the language $2 \chi 3=2,3$ times, $2 x 4=2,4$ times etc
- Ulse sfort multiplication to multiply a 1-digit number by a number witf up to 4 digits
- Ule long multiplication to multiply a 2-digit by a number with up to 4 digits
- Ulse sfort multiplication to multiply a 1-digit number by a number with one or two decimal places, including amounts of money.
- Multiply fractions and mixed numbers by whole numbers.
- Multiply fractions by proper fractions.
- Ulse percentages for comparis on and calculate simple percentages.
- Estimate answers using rounding and approximation

Key vocabulary

share, share equally, one each, two each..., group, groups of, lots of, array

Key SKills for division at Year 1

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations arrays with the support of the teacher
- Through grouping and sharing smallquantities, pupils begin to understand, division, and finding simple fractions of objects, numbers and quantities.
- They make connections between arrays, number patterns, and counting in twos, fives and tens.

Key vocabulary share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over

Key Skills for division at Year 2

- Count in steps of 2,3 , and 5 from 0
- Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers.
- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the χ, \div and $=$ signs.
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mentalmethods, and multiplication and division facts, including problems in contexts.

Year 3 Divide 2-digit numbers by a single digit
 Children should use their known facts to divide mentally; the below methods. should be modelled and used alongside mental calculations.

Example without remainder.

$40 \div 5$
Ask "How many 5 s in 40?"

Example with remainder
$38 \div 6$

If children are confident counting in single multiples, they should be taught to simplify the method as below:

For larger numbers, when it becomes inefficient to count in single multiples, bigger jumps can be recorded using known facts.

Example without remainder:
$81 \div 3$

This could either be done by working out the numbers of threes in each jump as you go along (10 threes are 30 , another 10 threes makes 60 , and another 7 threes makes 81. That's 27 threes altogether) or by counting in jumps of known multiples of 3 to reach 81 ($30+30+21$) then working out the number of threes in each jump.

Example with remainder-
$158+7$

$\frac{10 \times 4}{40}$ ${ }^{48}$ line first without, then con, then using Gead bar to show link to EXNL
$10+2=12$ with remainders

Key voc abulary share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, 'carry', remainder, multiple

Key Skills for division at Year 3

- Recall and use division facts for the $2,3,4,5,8$ and 10 multiplication tables
- Write and calculate mathematical statements for division using the multiplication ta.

Gles that they know, including for two-digit numbers divided by one digit

- Solve problems, in contexts, and including missing number problems, involving division.
- Pupils develop efficient mentalmethods, for example, using division facts (e.g. using $3 \times 2=6,6 \div 3=2$ and $2=6 \div 3)$ to derive related facts $(30 \times 2=60$, so $60 \div 3=20$
and $20=60 \div 3$).
- Pupils develop reliable written methods for division, starting with calculations of 2-digit numbers 6y 1-digit numbers using a $\operatorname{EN}(L$.
- $\mathcal{H a l v e}$ even numbers up to 50 and multiples of ten to 100
- Perform divisions within the tables including those with remainders, e.g. $38 \div 5$.

Year 4 Divide up to 3-digit numbers by a single ${ }_{7}$ digit.

 Once children are secure with division as grouping, demonstrate this using number lines and arrays. Then, short division for larger 2-digit numbers should be introduced, initially with carefully 8 selected examples requiring no calculating of remainders at all.

Key vocabulary share, share equally, one each, two each..., group, equal groups of, lots

 of, array, divide, divided by, divided into, division, grouping, number line, left, left over r, inverse, short division, 'carry', remainder, multiple, divisible by, factorKey Skills for division at Year 4
Use a written method to divide a 2-digit or a 3-digit number by a single-digit number.
Give remainders as whole numbers.
Recall multiplication and division facts for all numbers up to $12 \chi 12$.

- Use place value, known and derived facts to multiply and divide mentally, including: multiplying and dividing by 10 and 100 and 1.
- Pupils practise to become fluent in the formal written method of short division with exact answers when dividing by a one-digit number
- Pupils practise mental methods and extend this to three-digit numbers to derive facts, for example $200 \times 3=600$ so $600 \div 3=200$
- Pupils solve two -step problems in contexts, choosing the appropriate operation, work. ing with increasingly harder numbers. This should include correspondence questions such as three cakes shared equally between 10 children.

Year 5 Divide up to 4 digits by a single digit,

 including answers witf remainders.Short division including remainder answers. Please refer to 94 or 93 if necessary to ensure children are confident in the

steps towards short division.

Once children's understanding of this method is secure they might shorten their dialogue to:
"How many 6s in 28?"
"4 remainder 4"
"How many $6 s$ in 44?"
"7 remainder 2"

Divis ion should be given in real life contexts, including using money and measures (as whole numbers and without decimals), so that pupils know to round the answer up or down.

Answers could also be given as remainders, decimals or fractions.

47 r 2 $8^{4} 4$

BUI ensure children have a secure under. standing of what they are doing and are able to use the ir knowle dge of related facts to either make a rough estimate first or have an ide a about whether the ir final answer is reasonable or not.

Key vocabulary share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided $6 y$, divided into, division, grouping, number line, left, left over, inverse, short division, 'carry', remainder, multiple, divisible by, factor, quo tient, pr ime number, prime factors, composite number (non-prime)

Key Skills for division at Year 5

- Recall multiplication and division facts for all numbers up to 12×12 (as in 94).
- Multiply and divide numbers mentally, drawing uponknown facts.
- Identify multiples and factors, including finding allfactor pairs of a number, and common factors of two number.
Solve problems involving multiplication and division where larger numbers are decomposed into the ir factors.
Multiply and divide whole numbers and those involving decimals by 10,100 and 1000.
- Ulse the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
- Workout whether a number up to 100 is prime, and recall prime numbers to 19
- Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and inter-pret remainders appropriately for the context
Use multiplication and division as inverses. Interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as de cimals or by rounding (e.g. $98 \div 4=24$ r2 $241 / 2=24.5 \approx 25$).

Sear 6 Divide at least 4-digit numbers 6y single and 2-digit numbers (including decimals).

Short division (for dividing by a single digit)

Teachers must consult division progression methods from previous years in order to determine valid starting points for children in year 6.

Key vocabulary As previously \& common factor

Key Skills for division at Year 6

- Recall and use multiplication and division facts for all numbers to 12×12 for more comple x calculations
Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. Ulse sfort division where appropriate.
- Perform mentalcalculations, including with mixed operations and large numbers.
- Identify common factors, common multiples and prime numbers.
- Solve problems involving all 4 operations.
- Ulse estimation to checkanswers to calculations and determine accuracy, in the context of a problem.
- Ulse written division methods incases where the answer fas up to two decimalplaces.
- Solve problems which require answers to be rounded to specified degrees of accuracy.

